STABILITY OF ELASTOPLASTIC FLOWS

V. M. Volehkov, M. A, Vinogradov, UDC 531 :539.374
and A. A. Kozlov

The fundamental inhomogeneity of plastic strain is a well-known fact; it can become concentrated in
individual slip planes. In the case of sufficiently high strain rates, the strain-localization effect can result in
 fracture [1]. A reduction in temperature is similarly manifested by an increase in the strain rate [2].

We now investigate the stated problem from the standpoint of stability of elastoplastic flows.

We use the model of a viscoelastic fluid, which adequately describes the behavior of the material at
high strain rates.

The motion of a viscoelastic medium is described by the equations
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in which o ji is the stress tensor; p is the density of the medium; S‘i,i ig the spherical part of the viscous
strain tensor; c is the specific heat; k is the thermal conductivity; p, A are the Lamé constants; uj denotes
the components of the velocity; T is the temperature; and p*, A ' are the temperature~dependent viscosity
coefficients. The first term on the right in Eq. (5) is the work of viscous deformation.

To solve the flow-stability problem it is necessary to perturb the main motion described by Egs. (1)-
(6) and to analyze their behavior with time.

For the simplest case of plane Mayered® flow (Fig. 1a) we have
O3 = &3 = Uy = Uy = 0.

In the case of an incompressible medium and temperature-independent elastic coefficients, we have for
our problem ’

Oyy = G99 = Og3 = 0, 845 = 899 = &, = 0.
Also, we adopt an elementary temperature dependence of the viscosity coefficient: p'= 1/bT (b= const). Then
(1)-(6) assume the following form for the components gy, and u; (we drop the subscripts from now on):
pou/dt = do/dy, duldy = (1/2u)dc/dt + bTo, pcdT/ot = /hé"’Tléy2 + 8T¢?,
or, transforming to dimensionless variables
o =0/G; T = (bk/e)T; y = yVWk)G; T = (cGlk)t; G = 2n,

we obtain

G _ 498 v _ 99, g 7
ot dy oy at
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(from now on we drop the tilde above the dimensionless variables).
The unperturbed flow with constant strain rate £, (variables with subscript 0) satisfies the equations
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Varying the system of equations (7), we obtain for the perturbations u', ¢!, and T?
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Strictly speaking, the system (8) does not have steady-state solutions. For small values of A, however, we
can analyze the quasi-steady-state case (doy/dt=0). Then Ty, =du/dy= £, and the coefficients T, and g in the
system of equations (9) are constants. The error introduced by the latter assumption is subsequently tested
by direct numerical integration of the system (8), (9).

Seeking a solution of the system (9) with constant coefficients in the form
u = A exp(ioy + B2),
o = B'expl(ioy + pt), I' = C' exp (foy + Bt),
we obtain the characteristic equation
B2 + 4 (02 + Ty — Aof) B* + [Aw? (T, +1) + Ac3T,| B + A%t — 4%%F =0.

The eigenvectors R={u, o, T} corresponding to the eigenvalues Biwi, have the form
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For unstable perturbations ReS >0 (for at Ieast one root). Consequently, invoking the Hurwitz condition,
we arrive at the flow-stability condition ’

® < O,

or, in dimensioned form, o < (¢/T)) 170k.

It is natural to suppose that the real ultimate flow pattern (see Fig. 1b} will be determined by perturba-
tions having the maximum growth rate. Numerical computations based on Eq. (9) for the determination of
such perturbations are represented by the dashed curve in Fig. 2; the solid line separates the instability
domain {w < oy) from the stability domain; the dots indicate the locus of the boundary of the instability domain
as obtained by simultaneous numerical solution of the systems (8) and (9), i.e., with allowance for the time
variation of the coefficients T; and o in Eq. (9).

-The foregoing results show that with an increase in the strain rate (or a decrease in the temperature)
the distance between strain-localization planes diminishes (in conformity with the experimental data).

It is important to note that the conclusions reached above are of a qualitative theoretical character and
are valid only for large strain rates. In particular, the conclusion about the existence of unstable perturba-
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tions for arbitrary small strain rates is not physical, because a different model of the medium’is required in
this case.

Moreover, in the general case it is required to solve the appropriate boundary-value problem, in which
case appreciable changes can be incurred. The conclusions obtained above can only be valid for domains in
which the characteristic space scale is much greater than the space scale of the unstable perturbations.
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A TECHNIQUE FOR THE SOLUTION OF WAVE
PROBLEMS FOR A NONLINEAR COMPRESSIBLE
MEDIUM

N. Mamadaliev and Sh. Mamatkulov UDC 539.374:534.231.1

In this article we give analytical solutions of the problems of one-dimensional and two-dimensional
stationary shock propagation in an ideal nonlinearly compressible medium under the action of sudden strong
disturbances in the form of explosive impulses. We investigate the one-dimensional nonstationary problems
of a plane and a spherical layer, and in the two-dimensional context solve the problem of the action of 2 moving
disturbance (load) on an inelastic half-plane for the case in which the velocity D of a disturbance moving along
its boundary is greater than the shock propagation velocity in the material of the half-plane. It is assumed in
all the problems that the medium at the shock is subjected instantaneously to a nonlinear load and that linear
irreversible loading takes place in the disturbed postshock region (Fig. 1). This statement of the problems
permits them to be solved by the inverse route, i.e., by specifying a definite form (velocity) for the shock sur-
face and determining the corresponding loadmg proflle at the boundary of the layer or half-plane, In this case
the motion of the medium in the unloading region is described by the wave equation in two variables, in appli-
cation to which a Cauchy problem is formulated; it is known [1] that a solution of this problem exists and is
unique. In a concrete example we examine the case in which the equation for the shock surface is given as a
second-degree polynomial in ¢ and we compare the results of the computations with results obtained on the
basis of the method of characteristics [2], which yields satisfactory agreement of all the parameters of the
medium.

The case of linear loading and unloading of the medium for the two-dimensional problem has been in-
vestigated in [3, 4]. A solution of the problem of the propagation of convergent spherical and cylindrical shocks
in an ideal inelastic medium with rigid unloading is given in [5]. The investigated problems have potential
practical applications in the study of strong disturbances in water-impregnated soils and in reservoirs.

§1. Propagation of One-Dimensional Plane and Spherical

Shocks in a Nonlinearly Compressible Medium

Let a monotonically decreasing load py(t) be applied to the boundary of a layer. As a result, a shock
wave propagates in the medium with leading edge r =R(t), behind which unloading takes place. In this case, for
the disturbed region we have equations of motion continuity, and state in the form

ot (%420 .
p(r, t) = p* + Ele — e*),
where & = 1=py/p, E= cpp At the shock r=R(t) we have relations of the form
uk(t) = e*R, p* = p* s H?, p*(f) = aue* + ape*® (R = dR/dY). (1.2)
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