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The fundamental  inhomogenei ty of p las t ic  s t ra in  is a well-known fact; it can become concentrated in 
individual slip planes.  In the case of sufficiently high s t ra in  ra tes ,  the s t ra in - loca l iza t ion  effect  can resu l t  in 
f r ac tu re  [1]. A reduct ion  in t empe ra tu r e  is s imi l a r ly  manifes ted by an increase  in the s t ra in  ra te  [2]. 

We now invest igate  the s tated p rob lem f rom the standpoint of s tabi l i ty  of e las toplas t ie  flows. 

We use the model  of a v i scoe las t i c  fluid, which adequately desc r ibes  the behavior  of the mate r i a l  at 
high s t ra in  r a t e s .  

The motion of a v i scoe las t i c  medium is  descr ibed  by the equations 
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in which a ik is  the s t r e s s  t ensor ;  p is the densi ty of the medium; e v is the spher ica l  par t  of the v iscous  
s t r a in  t ensor ;  c is the specif ic  heat;  k is the the rma l  conductivity;/z,  X a re  the Lam6 constants;  ui denotes 
the components  of the veloci ty;  T is the t empera tu re ;  and # ~, k '  a r e  the t empera tu re -dependen t  v i scos i ty  
coeff icients .  The f i r s t  t e r m  on the r ight  in Eq. (5) is the work of v iscous  deformat ion.  

To solve the f low-stabi l i ty  problem it  is  n e c e s s a r y  to per turb  the main motion desc r ibed  by Eqs. (1)- 
(6) and to ana lyze  the i r  behavior  with t ime.  

F o r  the s imples t  case of plane " layered"  flow (l~ig. la} we have 

C~3i ~-- ~3i ~ U3 ~ U2 ~ 0 .  

In the case of an incompress ib le  medium and t empera tu re - independen t  e las t ic  coefficients,  we have for 
our  p rob lem 

U I I  = U22 ~ O.33 ~ 0~ 835 ~ ~22 ~--- 811 ~ 0 .  

Also, we adopt an e l emen ta ry  t e m p e r a t u r e  dependence of the v i scos i ty  coefficient:  /~'= 1 /bT (b = const). Then 
(1)-(6) a s sume  the following form for the components crlz and u 1 (we drop the subscr ip ts  f rom now on): 

pOu/~t = Oq/Oy, Ou/Oy = (l/2u)O~/Ot -q- bTcr, pcOT/Ot ~--kO2T/Oy ~ q- bTff", 

or ,  t r ans fo rming  to d imens ionless  va r iab les  

= o/G; -T  = (bk/c)T;  y ' " = . = yV(b . , k )V ,  7 == (cG/k)t; G 2u,  

we obtain 

o~ 0~ 0~ 0~ - -  (7) - = = A  --.= +To' ,  
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where  

O'T = A 02"~ bGk 
o=7 ~ + AT~ A = - - ~  

( f rom now on we drop the t i lde above the d imens ion less  va r i ab les ) .  

The unper tu rbed  flow with constant  s t r a in  r a t e  ~0 (var iab les  with subsc r ip t  0) sa t i s f i e s  the equations 
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Varying  the s y s t e m  of equations (7), we obtain for the pe r tu rba t ions  u t, g T and T t 
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Str ict ly  speaking,  the s y s t e m  (8) does not have s t e a d y - s t a t e  solutions.  F o r  smal l  va lues  of  A, however ,  we 
can ana lyze  the q u a s i - s t e a d y - s t a t e  case (dff0/dt=0). Then T0~ 0 = d u / d y =  d0, and the coeff icients  T o and g0 in the 
s y s t e m  of equations (9) a r e  constants .  T h e  e r r o r  introduced by the la t ter  assumpt ion  is  subsequent ly  tes ted 
by d i rec t  numer i ca l  in tegra t ion of the s y s t e m  (8), (9). 

Seeking a solution of the s y s t e m  (9) with constant  coefficients in the fo rm 

u' = A' exp (io~y + [~t), 

o' = B'exp(io~g + ~t), T' = C' exp (io)g + ~t), 

we obtain the c h a r a c t e r i s t i c  equation 

~8 + A (co ~ + To --  A(~o ~) ~2 + [Ar ~ (To + i) + A(~2To] ~ + A2o) a - -  A%)~o~ = O. 

The e igenvec to r s  R ={u, ~, T} cor responding  to the e igenvalues  3iwi, have the f o r m  

A~o~ ~o~ t}. 
R~-= {-- A ~  + roPt + P~; A~  + ToP~ + P~; 

F o r  unstable pe r tu rba t ions  ReB > 0 (for at  l eas t  one root). Consequently,  invoking the Hurwitz condition, 
we a r r i v e  at  the f low-s tab i l i ty  condition 

o~ ,~ 0o, 

or ,  in d imensioned form,  co < i e /T )V t /bk~  

I t  is na tura l  to suppose that  the r ea l  u l t imate  flow pa t t e rn  (see Fig. lb) will be de te rmined  by p e r t u r b a -  
t ions having the m a x i m u m  growth ra te .  Numer i ca l  computat ions based on Eq. (9) for  the de te rmina t ion  of 
such pe r tu rba t ions  a r e  r e p r e s e n t e d  by the dashed curve  in Fig. 2; the solid line s e p a r a t e s  the ins tabi l i ty  
domain (w < ~0) f rom the s tabi l i ty  domain; the dots indicate the locus of the boundary of the instabi l i ty  domain 
as  obtained by s imul taneous  numer i ca l  solution of the s y s t e m s  (8) and (9), i .e . ,  with al lowance for the t ime 
va r i a t i on  of the coeff icients  T o and % in Eq. (9). 

T h e  foregoing r e s u l t s  show that with an i nc r ea se  in the s t ra in  r a t e  (or  a d e c r e a s e  in the t empera tu re )  
the dis tance between s t r a in - loca l i za t ion  planes  d imin i shes  (in conformity  with the expe r imen ta l  data). 

I t  is  impor tan t  to note that  the conclusions reached above a r e  of a qual i ta t ive theore t i ca l  cha rac te r  and 
a r e  valid only for l a rge  s t r a in  r a t e s .  In pa r t i cu la r ,  the conclusion about the exis tence  of unstable p e r t u r b a -  
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tions for a rb i t ra ry  small strain rates is not physical, because a different model of the medium'is required in 
this case. 

Moreover,  in the general case it is required to solve the appropriate boundary-value problem, in which 
ease appreciable changes can be incurred. The conclusions obtained above can only be valid for domains in 
which the character is t ic  space scale is much grea ter  than the space scale of the unstable perturbations. 
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A T E C H N I Q U E  FOR T H E  S O L U T I O N  OF WAVE 

P R O B L E M S  F O R  A N O N L I N E A R  C O M P R E S S I B L E  

M E D I U M  
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In this ar t icle  we give analytical solutions of the problems of one-dimensional and two-dimensional 
stationary she ck propagation in an ideal nonlinearly compressible medium under the action of sudden strong 
disturbances in the form of explosive impulses. We investigate the one-dimensional nonstationary problems 
of a plane and a spherical layer,  and in the two-dimensional context solve the problem of the action of a moving 
disturbance (load) on an inelastic half-plane for the case in which the velocity D of a disturbance moving along 
its boundary is g rea te r  than the shock propagation velocity in the material  of the half-plane. It is assumed in 
all the problems that the medium at the shock is subjected instantaneously to a nonlinear load and that linear 
i r r evers ib le  loading takes place in the disturbed postshock region (Fig. 1). This statement of the problems 
permits  them to be solved by the inverse route, i.e., by specifying a definite form (velocity) for the shock sur-  
face and determining the corresponding loading profile at the boundary of the layer or half-plane. In this case 
the motion of the medium in the unloading region is described by the wave equation in two variables, in appli- 
cation to which a Cauchy problem is formulated; it is known [1] that a solution of this problem exists and is 
unique. In a concrete example we examine the case in which the equation for the shock surface is given as a 
second-degree polynomial in ~ and we compare the resul ts  of the computations with results  obtained on the 
basis of the method of character is t ics  [2], which yields satisfactory agreement of all the parameters  of the 
medium. 

The case of linear loading and unloading of the medium for the two-dimensional problem has been in- 
vestigated in [3, 4]. A solution of the problem of the propagation of convergent spheri cal and cylindrical shocks 
in an ideal inelastic medium with rigid unloading is given in [5]. The investigated problems have potential 
practical  applications in the study of strong disturbances in water-impregnated soils and in reservoi rs .  

w ! .  P r o p a g a t i o n  o f  O n e ' D i m e n s i o n a l  P l a n e  a n d  S p h e r i c a l  

S h o c k s  i n  a N o n l i n e a r l y  C o m p r e s s i b l e  M e d i u m  

Let a monotonically decreasing load p0(t) be applied to the boundary of a layer.  As a result,  a shock 
wave propagates in the medium with leading edge r =R(t), behind which unloading takes place. In this case, for 
the disturbed region we have equations of motion, continuity, and state in the form 

0, ~ 0~=0 ,  o p +  (0u ~ )  
0-'t" +-P- a7 ~-  p --~ -{-- -  =0 ,  (1.1) 

p(r ,  t) = p*  -1- E(8  - -  e*) ,  

where e = 1 - p o / p ~  E = c 2 p At the shock r =R(t) we have relations of the form 
P " 

u*( t )  = s*/~, p* = p*s*/~ ~, p*( t )  = a l e *  + ~.,s *~ ( i t  = dR~dr). (1.2) 
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